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NUMERICAL INVESTIGATION OF THE PROCESS OF SHOCK REFLECTION 

FROM A WALL WITH A SLOT HOLE 

A. B. Britan, A. Ya. Rudnitskii, 
and A. M. Starik 

UDC 533.6.07 

The motion of shocks in channels of variable section is an important, hardly studied 
phenomenon that is utilized extensively in industrial technology, aerophysical experiment 
practice, and also in laboratory investigations utilizing shock tubes [I]. 

In the simplest case when two rectilinear channels of differing transverse dimensions 
are connected by a junction with a smooth change in section, analysis of the flow on both 
sides of the junction is ordinarily conducted within the framework of the quasistationary 
one-dimensional stream model [2-4]. In particular, for a channel with diminution of the 
cross-sectional area A quasistationary theory predicts four possible modifications of the 
flow wave structure, displayed schematically in the upper part of Fig. i. Since the flow 
in the junction itself is not considered, the function is replaced by a discontinuity in the 
junction diagrams, at which the incident shock arrives from the left (the solid heavy lines 
are shock trajectories in space-time coordinates). The mode i with a reflected and passed 
shock between which the space is separated by a contact surface (its trajectory is shown by 
dashed lines in the diagrams) is realized for a subsonic stream velocity. As the incident 
shock intensity increases a nonstationary rarefaction wave (dash-dot) appears in the stream 
and accelerates the stream behind the passed wave to a supersonic velocity, mode 2. The 
reflected shock attenuates for small channel contractions and sufficiently high gas veloc- 
ities, it ceases to move upstream, mode 3, and degenerates in the long run into a weak dis- 
turbance, mode 4 [2, 4]. The flow wave structure in mode 4 is determined by the passed shock 
and the rarefaction wave. 
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The characteristic parameters on which the resultant wave structure depends are there- 
fore the incident shock Mach number M s = Vs/a I (v s and a I are the incident shock velocity 
and the speed of sound in the unperturbed gas) and the relative channel dimension A' = AI/A 
(A l is the channel area in the exit section of the junction). The solid lines in Fig. i are 
the boundaries between the domains of values of the parameters M s and A' for which the flow 
modes predicted by quasistationary theory for a perfect gas with adiabatic index ~ = 1.4 are 
realized. The numbering of the domains in the mode diagram and the wave structures in the 
upper part of Fig. i are in agreement. 

An interesting feature of the mode diagram is the presence of domains in which three 
stationary wave structures 2, 3, 4 are possible (domain of coexistence). The problem of 
selecting the specific structure being realized in this part of the diagram for given M s and 
A' was solved in [3] in conformity with the principle of minimum entropy production. How- 
ever, it was later shown [5] that a unique solution without a reflected shock (mode 4) is 
realized in the coexistence domain, while the absence of a structure 3 was explained by the 
shock instability in the narrowing junction. This fact was recently confirmed in numerical 
computations [6] that also clarified the dynamics of flow development and the transition 
from mode 2 to mode 4. On the basis of the solution of the one-dimensional nonstationary 
gasdynamics equations for an inviscid, nonheat-conducting gas it has been obtained in [6] 
that the flow modes predicted by the quasistationary theory actually hold (with the excep- 
tion of the features noted in the coexistence domain), where the time to shape the stationary 
stream depends substantially on the governing parameters of the problem M s and A'. 

It was noted above that a quasistationary analysis is applicable for flows sufficiently 
close to the one-dimensional, i.e., for channels connected by a junction with a moderate 
(-10-15 ~ ) wall slope [6-8]. If channel contraction has the shape of a step or obstacle in 
the form of a reflecting wall with a hole, the flow pattern is complicated substantially 
[8-I0]. 

Figure 2 shows a diagram of the flow restored by means of photographs of the shock re- 
flection process from a wall whose right surface is cut at a 20 ~ angle while the gap between 
the sharp edge and the upper wall of the channel forms a slot hole [i0]. The incident shock 
arrives at the wall from the left and in the next instant (Fig. 2a) a rarefaction wave cen- 
tered on the sharp edge of the reflecting wall 4 is present on shadow photographs together 
with the passed wave 1 and the planar part of the reflected front 2. Interaction between 
the rarefaction wave and the reflected shock front results in the formation of the curvilinear 
section of the front. 

Further flow development is determined by interaction between the main elements of the 
pattern themselves and with the channel walls. The photograph in Fig. 2b is obtained at a 
later time when a Mach configuration is formed because of shock reflection; the arrows indi- 
cate the directions of main perturbation motion. Clearly seen in Fig. 2c is the rectilinear 
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shock 5 of the Mach configuration, the Mach stem, the reflected front section 2 and the curvi- 
linear shock 6 occupying a significant stream domain to the left of the reflecting wall up 
to now. The complex flow to the right of the wall is governed by diffraction of the passed 
wave in the expanding channel [ii, 12] as well as by viscous effects in the stream and vor- 
tex formation in the neighborhood of the sharp edge. Not only the nonstationary but also 
the substantially two-dimensional nature of the stream should be taken into account to 
analyze the flow pattern on both sides of the reflecting wall. It can be assumed in advance 
(in particular, this is mentioned in [4]) that the two-dimensional effects change even the 
resultant flow structure, which will be different, for given M s and A', from the mode pre- 
dicted by the quasistationary stream model. Since there are no appropriate computations, 
it is of interest to perform a numerical modeling of the process and to study the influence 
of the governing parameters on the resultant flow pattern upon shock reflection from a wall 
with a slot hole. 

A plane channel of height 2H with endface wall in the section x = 0 at which a plane 
incident shock front arrives from the left at the time t = 0, was considered in the computa- 
tions. There is a slot hole in the wall whose height is 2h from the sharp edge, and goes 
over into the expanding nozzle for x > 0. The gas on the right of the incident shock front 
is at rest. Numerical integration of the two-dimensional nonstationary equations describing 
the inviscid and non-heat conducting perfect gas flow was executed by the Godunov method [13] 
in the Kolgan [14] modification to assure second-order accuracy in the space coordinates and 
first-order accuracy in the time. 

Nonpenetration conditions were imposed on the solid impermeable walls, and the condi- 

tion of "nonreflection" of the perturbations on the right and left boundaries of the com- 
putation domain [13]. It was assumed that the gas parameters on the left boundary corre- 
spond to conditions behind the incident shock (pressure p = P2, density p = P2, longitudinal 
velocity component u = u2, transverse component v = 0), and conditions in the unperturbed gas 
on the right boundary (Pz, Pl, ul = Vl = 0). 

Taken as the initial distribution was p = P2, P = P2, a = a2, u = u2, v = 0 for x s 0 
and p = Pz, P = Pl, a = al, u = 0, v = 0 for x > 0. Dimensionless variables were used with 
s previous notation retained, where half the slot height h, the sound speed a I, and the 
density Pl were the length, velocity, and density scales. The scales for the pressure, time, 
and temperature were Pma[, h/a I, and a~/R (R is the gas constant). The computation (for x < 
0) was performed on a rectangular mesh without explicit separation of the discontinuities. 
The extent of the computation domain along the Ox axis occupied not more than 13h, out of 
which the length of the section to the left of the wall (x < 0) was 9h while the maximal num- 
ber of computational cells reaches 6500. 

An anomalous pressure surge on the endface wall was observed in the computations at the 
initial time but it vanished sufficiently rapidly. Moreover, formation of an entropy layer 
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that was conserved throughout the extent of the computation was noted near the wall. Such 
"effects" were not taken into account in the flow pattern analysis since they are associated 
with features of the numerical method and do not affect the results of the computations. 

Before going over to an analysis of the results obtained, we consider certain regulari- 
ties of the development of the reflection pattern with time. Detailed processing and classi- 
fication of numerous shadow photographs of the stream, performed in [9], showed that two 
phases exist for the process of plane reflected shock front formation. The first phase of 
duration t I is governed by the interaction between the curvilinear shocks 6 and is terminated 
by the formation of a Mach configuration (see Fig. 2b and c) and the Math stem on the channel 
axis. The second phase is accompanied by growth of the Mach stem, which increases to dimen- 
sions of the height H in the time t 2. 

The main result of the experiments [9] is establishment of a self-similar nature of the 
wave processes accompanying the reflected shock formation in agreement with the deductions 
of [I0], it should be emphasized here that only the location and dimensions of the main flow 
pattern elements at different times were determined in both researches. In practice there 
are no data on the influence of the processes mentioned on the gas stagnation parameters in 
the area of the channel endface wall in the literature. The set of values of t I and t 2, ob- 
tained in different experimental conditions, is presented in [9] without discussion of the 
specific dependence of these characteristics on the governing parameters M s and A'. 

The results of the numerical investigation show that t I depends mainly on local effects 
in the area of the hole whose relative dimension A' exerts no influence on the process in 
the initial stage since the channel side walls take no part in it. As noted in [9], the 
sound speed a 2 can be a characteristic quantity governing the rate of formation of conditions 
in the area of the hole for t < t I. As M s increases the values of t I and t 2 are shortened, 
where t 2 also depends on the parameter A' since the time during which the triple point of the 
Mach configuration reaches the channel side wall grows as the absolute size of the hole di- 
minishes. 

A change in the growth rate of the Mach stem associated with features of the process 
development at the time when the curvilinear shock 6 of the Mach configuration goes over 
from the endfact to the side wall of the channel, is detected in the computations. Further 
process of the shock 6 occurs as the velocity grows until the configuration triple point 
reaches the side wall, where this effect is later manifest as the parameters M s and A' di- 
minish. According to the computations under the conditions of the experiment [i0], deviation 
of the process from self-similarity should set in 160-170 msec after formation of the Mach 
configuration, however, the observation time in [i0] is considerably smaller (~i00 msec), 
consequently, the mentioned effect is not recorded in the experiments. 

The non-self-similar nature of the processes accompanying the reflected shock front 
formation is also manifest in the behavior of the motion trajectories of the axial and near- 
wall parts of the front. 

Presented in Fig. 3 are the appropriate trajectories in space-time coordinates as com- 
puted for several values of M s and A'. The solid curves correspond to the channel axis, and 
the dashes to the side wall. Trajectories for M s = 4, 4, 6, 6, 8 and A' = 0.162, 0.333, 
0.333, 0.8, 0.8 are shown by numbers 1-5. Intersection of the curves with the t axis corre- 
sponds to the time of curvilinear shock reflection from the channel axis (see Fig. 2b). By 
virtue of the reasons discussed above, the time t & t I is independent of A' and diminishes 
as M s grows. 

A remarkable feature of all the curves is the presence of a section on which the near- 
axis part of the reflected front overtakes the near-wall section, therefore, the front starts 
to be bent towards the side opposite to the channel reflecting wall. Computations show that 
in this stage of formation of the reflected shock front, the curvilinear shock 6 of the Mach 
configuration moves from the channel side wall to the axis. The Mach stem occupies a whole 
section of the channel, however, the stream parameters continue to depend on the interaction 
processes of the main wave structure elements. 

Certain details of the formulation of the pressure Pw and temperature T w distributions 
at the side wall illustrate the computation results in Fig. 4. The case of subsonic flow 
behind the incident shock (M s = 1.52) for a large size hole A' = 0.91 was considered, the 
numbers I-I0 correspond to the times t = 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 1.75, 1.25, 0.8, 0.4. 
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The distance between the hole edges and the channel side wall is small in this case 
and the influence of the hole is felt continuously on the behavior of the stagnation param- 
eters. Successive reflections of the rarefaction wave and the curvilinear shock from the 
wall result in fluctuations of the parameters throughout the whole computation time. A do- 
main of elevated values of the temperature and pressure, which is related to stream stagna- 
tion in angular domains and in which conditions close to the flow behind a detached compres- 
sion shock are realized, is formed near the reflecting wall (x ~ 0.5). Elevation of the 
parameters in the entropy layer (as already mentioned; it is not shown in Fig. 4) is usually 
localized in a sufficiently narrow zone (x < 0.15) adjoining the endface and is not more 
than 3-4% of the values of Pw and Tw. The parameters on the side wall gradually approach 
the stationary values, however, the behavior of the pressure and temperature indicates a 
substantially two-dimensional nature of the processes behind a reflected shock for a sig- 
nificant time (t - 6.5). Utilization of the quasistationary theory (see, e.g., [15]) results 
in this case in substantial errors in the determination of the stream parameters. Let us 
note for comparison with Fig. 4 that under these conditions the quasistationary theory yields 
Pw = 1.011, T w = 1.003 while the parameters Pw = 2.2, T w = 1.28 are realized for reflection 
of a shock from a "blank" wall. 

It is interesting to compare configurations occurring in a two-dimensional stream during 
shock reflection from a wall with a hole to the wave structures 1-4 (see Fig. I). Such a 
comparison is especially urgent for large relative hole dimensions since both computational 
and experimental results are substantially absent in the upper domain of themode diagram 
which would permit restoration of the flow pattern under conditions of substantial influence 
of the two-dimensional effects. 

Figure 5 shows the computed distributions of the constant density lines (isopycn) in a 
stream, obtained for different reflection conditions. The isopycns in Fig. 5a and b corre- 
spond to a channel geometry and shock intensity in experiments [i0] (M s = 1.52, A' = 0.167). 
The main elements of the Mach shock configuration, the passed wave, and the rarefaction wave 
are reliably separated in the numerical modeling (the perturbation notations in Figs. 2 and 
5 agree). Up to the time t = 1.25 and 2.5 (Fig. 5a and b), the computed flow pattern to the 
left of the wall endface agrees with the shadow photographs in Fig. 2a and b. A wave struc- 
ture characteristic for the mode i is shaped, however, a nonstationary rarefaction wave as- 
sociated with channel broadening for x > 0 appears to the right of the hole. As A' increases 
to 0.91 for M s = 1.52 the rarefaction wave vanishes (Fig. 5e and f) and mode I with a sub- 
sonic velocity in the whole flow domain between the reflected and passed shocks is built up. 
The computation shows that the influence of a large hole attenuates the reflected shock, the 
individual stages of stationary pattern formation here seems to be compressed in time (see 
also Fig. 3, curves 3 and 4). In contrast to Fig. 5b there is no curvilinear shock 6 in Fig. 
5f up to the time t = 2.5, and the reflected shock front is sufficiently rectilinear. The 
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gas parameters on the side wall change in conformity with the data in Fig. 4 while the re- 
flected wave trajectories on the channel axis and wall agree in practice. This is precisely 
why dashed lines are not presented for curves 4 and 5 in Fig. 3. 

For M w a 2.1 the flow is reconstructed according to the wave structure of mode 2, which 
is conserved up to A' ~ 0.80. As the hole increases further, attenuation of the reflected 
shock results in the formation of a stationary configuration with a shock localized in the 
neighborhood of the section x = 0. Starting with A' = 0.91, the reflection pattern recalls 
the mode 3 predicated by quasistationary theory which would be conserved in the whole range 
of M s variation. The fact of the existence of such a configuration for A' = 0.91 would 
have been difficult to assume beforehand since the endface wall in this case is substantially 
replaced by a small step at the channel side wall. The isopycn distribution in the stream is 
presented in Fig. 5c and d for the times t = 1.25 and 4, respectively, for the mode mentioned 
(Ms = 4, A' = 0.91). Despite the significant hole dimensions, clearly traced in the initial 
stages of the reflection (Fig. 5c) is the process of Mach stem formation on the channel axis 
and the curvilinear shock interacts downstream with the noticeably deformed rarefaction wave. 

The stationary pattern of isopycn distribution is displayed in Fig. 5d, from which it 
is seen that the reflected shock front is rectilinear and transposed upstream. An increase 
in the incident shock M s for A' = 0.91 does not result in spoilage of the reflection pattern 
but only changes the coordinate of the stationary location of the reflected shock. For M s = 
8 the reflected shock was twice as close to the section x = 0 than for M s = 4, and as A' di- 
minished startedto move upstream in conformity with the wave structure of mode 2. Let us 
also note that no domain of mode coexistence predicted by the quasistationary theory (see 
Fig. i) was detected in the computations. 

The boundaries between the corresponding domains of values of M s and A', computed in the 
two-dimensional formulation, are presented in Fig. i by dashes with two dots. Shifting of 
the boundaries between modes i and 2 shows that for an abrupt contraction of the channel 
a supersonic flow is set up behind the passed shock for lower values of M s than in the one- 
dimensional stream. The location of this boundary depends substantially on the channel 
geometry downstream of the endface wall also. Results of the computation in Fig. i are ob- 
tained for a channel with parallel walls for x > 0. If the channel expanded for x > 0 (see 
Fig. 5), the stream behind the passed wave can become supersonic even when u= < a 2 behind 
the incident shock. In particular, this latter means that mode 1 is realized in the domain 
of values of M s and A' corresponding just to the right upper part of the mode diagram in Fig. 
I (for A' > 0.7) in the reflecting nozzles of shock tubes. The sequence of reflection pat- 
tern formation for A' = 0.91, M s = 1.52 can be tracked from the data in Fig. 4 and Fig. 5e 
and f. 

The two-dimensional nature of the reflection process results in a shift ofthe bound- 
aries even in the left part of the mode diagram. The lower dash-dot boundary separates 
the domain of parameter values for modes 2 and 3, where mode 3 is realized in the two-dimen- 
sional stream in a sufficiently narrow range of variation of the relative hole dimensions. 
For A' > 0.91 a mode of supersonic flow around an obstacle is formulated (a parameter domain 
above the upper dash-dot curve), which the computed isopycns presented in Fig. 5g and h 
for M s = 8 and A' = 0.97 and the times t = 0.2 and 1.75, respectively, demonstrate. 

The oblique compression shock is seen in Fig. 5g, which still does not reach the channel 
axis, the nonstationary rarefaction fan at the sharp edge of the hole, and the passed shock 
to the right of the hole. The pattern recalls the early stage of flow formation in other 
modes (see Fig. 5a, say), however, in this case the process seems "frozen" and the shock 
interaction on the axis does not later go over into Mach interaction. Let us note that the 
horizontal scale of the figures is 4.13 times coarser than the vertical, consequently all 
the isopycns appear somewhat compressed in the longitudinal direction and the slopes of the 
perturbations differ from the actual ones. The oblique shock with density drop p/p= = 6 
in Fig. 5h is reflected from the channel axis and its shape and slope to the stream are 
governed by the transverse distribution of the local M 2. For the conditions considered 
(M s = 8), on the stream axis M= = 1.79 while the slope of the shock is close to 45 ~ . The 
possibility of the existence of such a mode for large values of A' was discussed in [9]; let 
us note also that in the considered range of variation of M s and A' no condition for the 
origination of the mode 4 was detected. 

In channels with abrupt narrowing of the area the flow mode around a sharp step with an 
oblique compression shock is realized for M s > 2 and small step size (-7% of the channel 
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area). In the mentioned range of parameters the rounding off of the sharp step should re- 
sult in the appearance of a mode 4 and the influence of the step on the parameters in the 
stream core should thereby be diminished. 

The authors are grateful to V. A. Levin for constructive remarks during discussions 
of the results of the research. 
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